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Abstract

This study presents a comparative analysis of three methods for solving Fredholm linear integro-
differential equations: the Adomian Decomposition Method (ADM), the Modified Adomian
Decomposition Method (MADM), and the Series Expansion Method (SEM). These techniques are
employed to derive approximate analytical solutions to equations that often resist exact analytical
methods. The primary focus is to evaluate the accuracy, efficiency, and convergence of each
method through theoretical analysis and practical examples. Graphs and tables are provided to
illustrate the performance of these methods in solving selected problems. Our findings indicate
that while each method has its strengths, MADM demonstrates superior accuracy in most cases,
making it a promising tool for handling complex integro-differential equations in numerical
analysis

Keywords: Fredholm integro-differential equations, Adomian Decomposition Method, Modified
Adomian Decomposition Method and Series Expansion Method

1. Introduction

Some important problems in science and engineering can usually be reduced to a system of integral
and integro-differential equations (Rabbani & Zarali, 2012). An integro-differential equation (IDE)
is an equation that involves a combination of differential and integral operators in a single equation.
The background of the study of integro-differential equations is rooted in the broader study of
differential equations and integral equations. Differential equations to Scientists and Engineers
provide dynamics of mathematical models that describe natural phenomena that are abound in
their fields (Nwaoburu, 2020). It describes how a quantity changes with respect to one or more
independent variables while an integral equation is an equation containing an unknown function
under an integral sign.

pursuing analytical solutions to integro-differential equations represents a formidable yet crucial
endeavor in mathematical analysis. The Decomposition Method, devised by Adomian (1988), has
been pivotal in the development of analytic solution techniques. Adomian's work laid the
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groundwork for subsequent modifications and applications, demonstrating its efficacy in nonlinear
problems

The Modified Decomposition Method (MDM) was introduced as an enhancement of the original
method to address a broader class of problems. This comprehensive study highlights the
modifications and their application to singular initial value problems in second-order ordinary
differential equations (Wazwaz, 2006).

Employing methods such as Adomian Decomposition Method (ADM), Modified Adomian
Decomposition Method (MADM), and Series Expansion Method (SEM), researchers aim to
resolve these equations analytically and numerically. Through a systematic exploration of the
method's adaptability to integro-differential contexts, the study endeavors to provide a
comprehensive and efficient analytic solution framework

while both ADM and MADM share the general approach of decomposing a differential equation
into simpler components, MADM is specifically tailored to enhance the method's performance
when dealing with integro-differential equations. The MADM aim to address challenges associated
with integral terms, making it a more robust and versatile tool for a broader range of mathematical
models. On the other hand, SEM represents the solution as a series expansion involving orthogonal
functions. This method relies on finding appropriate basis functions and determining expansion
coefficients to approximate the solution. The study aims to comprehensively investigate and
compare the performance of ADM, MADM and SEM for solving Linear Fredholm Integro-
Diftferential Equations.

Several authors have used have Used ADM, MADM and SEM in solving integro differential
equation. Some have also made comparative analysis of different methods in solving integro
differential equation. For instance, Shams and Tarig (2020), utilized the Adomian decomposition
Sumudu transform method combined with the Pade approximant (ADST-PA method) to obtain
closed-form solutions for nonlinear integro-differential equations. Additionally, they conducted a
comparative study between the ADST-PA method and three other numerical methods: the
Adomian decomposition Sumudu transform method (ADSTM), the homotopy perturbation
method (HPM), and the variational iteration method (VIM). Their results indicate that the ADST-
PA method provides a superior approximation for a wide range of nonlinear integro-differential
equations compared to the existing methods. In their report, we have reviewed several recent
numerical methods for solving integro- differential equations. The numerical studies demonstrated
that all the methods produced highly accurate solutions for the given equations. The ADSTM,
HPM, and VIM are straightforward and user-friendly. However, they do not converge to a closed
form. The ADSTM method, in particular, is based on approximating the solution function by
truncating the series, leading to an inaccurate solution that significantly limits the method's
applicability. Asire and Najmudd (2023), presented a comparative analysis of the Adomian
Decomposition Method (ADM), the Modified Adomian Decomposition Method (MADM), and
the Variational Iteration Method (VIM). The primary objective of their research was to identify
the most effective method between the three methods.
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They said that the Adomian Decomposition Method (ADM), Modified Adomian Decomposition
Method (MADM), and Variational Iteration Method (VIM) are efficient and effective methods for
solving a wide range of problems. They said that the main advantage of these methods is that they
do not require the variables to be discretized. Furthermore, these are unaffected by computation
round off errors.

Additionally, they concluded that while ADM requires the evaluation of an Adomian polynomial,
which primarily required time-consuming algebraic calculations, VIM requires the evaluation of
a Lagrangian multiplier. Also, VIM facilitates the computational work and gives the solution
rapidly if compared with ADM and MADM.

Ghorieshi, et. al. (2011), introduced a general framework for solving nth-order integro-differential
equations using the Homotopy Analysis Method (HAM) and the Optimal Homotopy Asymptotic
Method (OHAM). He concluded that the OHAM is parameter-free and often achieves better
accuracy than HAM at the same level of approximation. Additionally, OHAM allows for easy
adjustment and control of the convergence region. In his study, a comparison through two
examples shows that both HAM and OHAM are effective and accurate for solving nth-order
integro-differential equations, closely matching the exact solutions

2. Methodology

Let us consider the linear fredholmn integro differential equation

uh(x) = () +Af, KCx, Du(t)de 2.1)
. . du(0) d?u(0) d3u(0)
With u™(0) =y, 0<m<(n—-1) that is u(0) =y, Zx =Y, diz = bs, dl; =
d™1u(o)
y4 R R = )/1’1—1
In this context ¥i,¥2,¥3,¥3s -« v eer . ¥n—q1 denotes real constants representing the initial

.. ) . . L . an
condition of u(x) and its derivatives at 0, while u™(x) which is equivalent to ﬁ denotes the nth

derivative of the unknown function u(x) and f(x) is a known function. These derivatives appear
both inside and outside the integral sign. The integral function's kernel, denoted as K (x, t), and the
function f(x) are specified as real-valued functions while u(t) represents a linear function of it.

The methods under discussion include the Adomian Decomposition Method, Modified Adomian
Decomposition Method and series expansion method each contributing to the advancement of
solving these types of equations. The subsequent paragraphs will elaborate on these methods in
detail.

2.2 Adomian decomposition method (ADM)

ADM is an analytical technique used to solve linear and nonlinear differential and integral
equations. It decomposes the solution into a series of components and solves each component
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iteratively. The method utilizes Adomian polynomials and operator theory to obtain analytical
approximations of the solution.

It is normal to integrate both sides of equation (2.1). Suppose L™ is an n — fold integration operator

L)) = LY (F(0)) + LA f, K(x, Hu(t))de) (2.2)
u(x) =y +y1x + %yzxz + %y3x3 + ot ﬁyn_lx"‘l + LN f(x) +

LA, kCx, Du(e)de)) 2.3)
Equation (2.3) can be expressed as

u(x) = Y4 l'ylx + L7I(f(x)) + L‘l(/lf K (x, )u(t))dt) (2.4)
Without loss of generality, if

K(x,t) = q(x)w(t) (2.5)

Equation (2.5) implies that the kernel is separable,

Equation 2.4 can be expressed as

u(x) = TP Lyt + h(x) + Lq@) @ f, wbu(®)dt) (2.6)

Let us rewrite (2.6) as

u(x) = X5 A +h(X)+Z(x)(/1f w(t)u(t))dt) (2.7)
Were

h(x) = L™H(f(x)) (2.8)
z(x) = L™'q(x) (2.9)

s T ylx is gotten from the n-fold integrator operation

The Adomian decomposition method defines the series solution u(x) by decomposing the
unknown function u(x) of any equation into a sum of an infinite number of components. This
decomposition is represented by the Adomian decomposition series. The approach involves
breaking down the unknown function into its constituent components using the Adomian method,
resulting in a series representation for the solution u(x)

Let u(x) be defined by

u(x) = Lymo Un (%) (2.10)

IIARD — International Institute of Academic Research and Development Page 91



about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X
P-ISSN 2695-1908, Vol. 10 No. 4 2024 www.iiardjournals.org Online Version

Equation (2.10) is equivalent to
u(x) = ug(x) + u  (x) + uy (x) + ug(x) + us(x) ... (2.11)

The components, denoted as u, (x) for n>0, that is uj U, uz,.................. are determined in a
recursive manner within the framework of the Adomian decomposition method. This method
focuses on the identification of these components, and the process involves substituting the linear
Fredholm integro-differential equation to derive the solution.

If we substitute equation (2.10) into equation (2.7), we get

Yin=o Un (%) = XiZo l,)/zx + h(x) +Z(x)(/1f w(t) Xnzo un(t))dt) (3.12)
Equation (2.12) can also be written as

uo () + ug (%) + up (%) + uz(x) + ug(x) + - = X4 l'ylx + h(x) +

z(x)(4 fb w () (uo(t) + uq (t) + up (6) + uz(t) + uy(t) + -+ )dt) (2.13)

uo () +uy (x) + Uy () +uz(x) +us(x) +-

b (2.14)
Zl,mx +h0O) +2()( f WO wo(0) + 2() (A f WO (0

F2(x)( f WO () + 2(0) A f w(Dus () + () (A f (D)

- )dt)
Every term outside z(x)(2 [, w(t) X un(£))dt) is referred to as uo(x).
Comparing both sides of equation 14
w() = NIy +hx) (2.15)
u, (x) = 200 [ w(t)ue(H)dt (2.16)
u,(x) = 200 [, w(t)uy ()de 2.17)
us (x) = 2002 [, w(t)uy(6)de) (2.18)
w,(x) = 20O [ w(t)us(H)dt (2.19)
us (x) = 200 [2 w(t)uy(O)dt (2.20)

And so on

Equation 2.15 -2.20 can be written as
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Unp1(0) = 2GOA [, w(Ou,(Ddt  n>1 (2.21)

From equation (2.21),

(1) m )
u™ (@) = hy () + 2, G (61 (0, 1(0), .. 1w, (8)) dt
(ny) e
W@ = k@) + 2@ (61010, ©) d
D2
g™ () = by () + 23, (610, 1(0), ., up(0)) dt
: (2.22)
>_
u(np)(x) = h,(x) +z f " le (8, uq (£), Uz (£), -on, Uy () dt
14 14 14 p\“» “1 » U2 y ey Up
Pw
With initial conditions:
uP (o) = uyj,i = 1,23 ., w,j = 0,1,2,3 ..., ;4

The Adomain series of u; (x)can be written as the following —

(uq (%) = X0 Usj

Uy (x) = 2}10 Uzj

uz(x) = Zﬁo Uszj
< Z (223)
Kup(x) = Z;.;O Upj
In general, u;(x) = Z;’;O wj,i =123, ... andj =0,1,2,....... (2.24)

2.3  Modified Adomain Decomposition Method
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The Modified Decomposition Method is an advancement of the Adomain Decomposition Method
yields the exact solution by computing only two terms from the decomposition series, offering the
advantage of computational efficiency.

From equation (2.10)

u() = ) un(®)
n=0

These relationships simplify the iterative process of determining the components.

In the conventional decomposition method, the initial components, denoted as u(x), are typically
identified as the function L™1(f(x)) + Y14 m )/lx which is equivalent to h(x) + X5 Ollllylx

However, in the modified decomposition approach, as outlined in Equation (2.1), the data function
f(x) can be intricately divided into two distinct components. That is

f(x) = folx) + f1(x) (2.25)
Consequently, the recursive relations for the modified decomposition method can be expressed as
follow
up(x) = 15y .sz + L7 (ho (X)) (2.26)
- b
w; (%) = L7 (f1(0) + z(x) [ h(D)u, (t)dt (2.27)
Uns1 (%) = 2(x) [2 R(Dup(D)dt,n > 1 (2.28)

Clearly, equation (2.26 — 2.28) above exhibits reliability by enhancing solution convergence and
diminishing the computational workload in comparison to the Adomian Decomposition Method.

It facilitates a faster convergence of the solution. The modified decomposition method tailors the
recursive relations to enhance the convergence behavior, ensuring a more efficient and rapid
attainment of the solution.

24 Series Expansion Method

The Taylor series method represents the solution as a power series expansion. It involves
expanding the unknown function and the kernel function in Taylor series about a given point and
substituting these expansions into the integral equation. By equating coefficients of like powers of
X, one can obtain a sequence of equations for the coefficients of the series expansion, which can
then be solved to approximate the solution

The fundamental principle behind the Series Solution Method primarily originates from utilizing
Taylor series expansions of analytical functions. It's important to emphasize that for Taylor series
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to be applicable, the existence of derivatives of all orders is essential, prompting us to compute
these derivatives accordingly. Furthermore, it's noteworthy that Taylor series centered at any point
b within its domain converges to f(x) within a neighborhood surrounding b

u(x) = N 2 (x — pyn (2.29)

n!

When x = 0, equation (3.29) is reduced to

u(x) = Xp=o anx" (2.30)
Or u(x) = ag+a;x + ax? + azx3 + agx® oo oo oo e e (2.31)
From (3.6)

u(x) = Xt vt + h(x) + Lq@) (A f, w(u(®)de)
Substituting equation (3.30) into equation (3.6), we get
o - - b o
i anx™ = TP yixt + h(x) + L) (A f, w(t) Tizo anx™)dt ) (2.31)

If h(x) and L™1q(x) comprises elementary functions like exponential functions, trigonometric
functions, etc., we should employ Taylor expansions for the functions contributing to the function.
Now, equating coefficients of like powers of x on both sides, we obtain a system of equations for
the coefficients a,. Solving this system will give us the coefficients and hence the Taylor series
solution for equation.

2.5 Solved Examples

Example 3.5.1: Consider the linear Fredholm integro-differential equation: u'(x) = e* — x +
xe* + [ 01 xu(t)dt, with the initial condition u(0) = 0, and the exact solution is

u(x) = xe*.(Asiya & Najmuddin, 2023).
Using inverse operator L™! = [()dx

We get L1 (u'(x)) = L7 (e*) — L71(x) + L™ (xe*) + L‘l(xfolu(t)dt)

fu’(x)dx :fexdx+fxexdx+f01u(t)dt)

X2 x2 (1
u(x)=ex—7+xex—ex+7.f u(t)dt + ¢
0

Where c is the constant of integration. Using the initial condition u(0) = 0
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c=0
We get
u(x) = xe* — x2_2 + x2_2f01 u(t)dt.
Adomain Decomposition Method
From (3.10) u(x) = Yoo Un (%)
Substituting equation (2.10) into (i)

© 2 2 12
;un(x) = xe* _x7 + %fo nz:;)un(t) dt
uy(x) + uy (%) + uy(x) +2u3 (xz) + uy(x) ...

X

=xex—x—+—+j (up(t) + uy (t) + uy (t) + us(t) + uy(t) .....)dt
2 27,

2
Clearly uy(x) = xe* — x?

X2t ®
iy () = = f > ua(ydt
0 n=0

2

x2 (1 x2 (1 , £2
u,(x) = 7[ uy(t)dt = 7[ (tet — ?)dt =
0 0

2 3

X t° 1
— _(—pt t _
2( et + te 6)0
_ 22
uy (x) 12x

2 2 2
Similarly, u,(x) = < [/ (‘%) dt ==

()_xzj‘l 5¢t2 dt_sz
=)\ 72 ) T a3

And so on
1 5
uo (%) + uy () + up (x) + uz(x) + -+ = xe* —Exz + Exz
N 5x? N 5x? N
72 432
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431
— x2
432

Modified Adomain Decomposition Method

Hence, u(x) = xe* +

Given that u(x) = xe* — xz—z + xz—z folu(t)dt. We will need to split f,(x) = xe* and
x2
fi) =%
up(x) = fo(x) = xe*

xZ x2 1
u(x) = —7+7f u(t)dt =
0
X2 2 (1
u,(x) = —7+7f uy(x)dt =
0

xZ x2 1 .
u(x) = —7+7f xe*dt =
0

xZ xZ 1
u(x) = —7+7 = 0 where f xe*dt =1
0

Also, u,(x) = 0 and so on. This implies th at u,,,,(x) = 0forn > 1
Hence, the solution becomes u(x) = xe*.

Series Expansion Method
2 2

From equation (i) u(x) = xe* — x? + x? f01 u(t)dt.
Let u(x) = Yp—o apx™

x%  x% 1 .
u(x) = xe* ——+ 7f0 u(t)dt. Can be written as

© n x X2 x? f1Ge n
Zn:O anx" = xe” — > + 7.[0 ano apt™ dt
xn

Recall that e* = Z?fzo;

o - x™ x? x? 1
On substitution, Y7o anx™ =xX50 > — >+ Jo Zmo ant™dt
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had xn+1
:Z " ——+—j Zantndt

n=0
2t 2 2| et |4
D X
! n! 2 2 ] n+1|0
S0 anx™ = Tt — Ty Dy An (i)
Equation (ii) can be written as
5 5 ( ,  x° x‘*)x2 x? a, a,
ap+a;x+ax“+azx*+--=|(x+x"+—+5. |-+ @+=+=+")
2! 3l 2 2 2 3
Comparing co-efficient
a,=0
a; =1
1 1
ST
1 1
4378
1 1
IRV TRV]
Let’s calculate an approximate value for a,
Oy S S T
2 2 2 3 5

3
a2z1_1+1(0+1+g+(%)+(§) (24)

> >t3 + )
1 1 1 a, 1 1 1
a2z1—§+—(0+§+?+8+%+m...)
a, 1 1 1 1 1
a2—6 1—§+ (O+2+8 3O+m...)

a
a, — ?2 ~ 0.8326

On evaluation, a, = 0.999
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5

2 3 4
Hence the series becomes u(x) ~ x +0.999 x? + x? + % + 2—4

Example 3.5.2: Let us Consider the system of Fredholm integro-differential equations:

M (x) = i—’é +6— f 2xt(M(t) — 3N (t))dt
0

N"(x) = 15x + g - f 3(2x + t2)(M(t) — 2N(t))dt
0

with the initial conditions M(0) = 1,N(0) = —1,M'(0) =0 and N'(0) = 2 and the exact
solutions are M (x) = 3x2 + 1 and N(x) = x3 + 2x — 1 (Asiya & Najmuddin, 2023).

Taking inverse operator L™! = [[(.)dxdx with the initial conditions M(0) = 1,N(0) =
—1,M'(0) =0and N'(0) =2

We get

1
L Y(M"(x)) = L‘l(i—z +6— f 2xt(M(t) — 3N(t))dt)
0
1
LY (N"(x)) = L"*(15x + g — f 3(2x + t2)(M(t) — 2N(t))dt)
0

1 1 L
M(x) =1+—x3+3x% —=x3 f t(G(t) — 3N(t))dt
20 3 (iif)

5 2 1 3 1

N(x)=—-1+2x+ §x3 + gxz — x3f (G(t) — 2H(t))dt — Exzf t2(G(t) — 2H(t))dt
0 0

Here m(x) = 1 + %x3 + 3x?

And n(x) = -1+ 2x +§x3 +§x2

Adomain Decomposition Method

1 1 1
M(x)=1+—x3+3x% - —x3J t(M(t) — 3N(t))dt
20 3 (iii)

M(x)=-1+2x+ ;x3 + gxz - x3f (N(t) — 2H(t))dt — ;xzj t2(M(t) — 2N(t))dt
0 0
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From equation 10, M(x) = XYoo= Ny (x) and N(x) = Y01 N, (%)

Equation iii can be written as

°° 1 I
( E M,(x) =1+ —x3+3x% — —x3f E t(M,,(t) — 3N, (t))dt
n=0 20 3 0 n=0

o)

5 2 Lo
N,(x) =—1+2x+=x3+-x%—x3 f Z (M, (x) — 2N,)dt

n=0

_ %xz fo 1 Z;H(Mn(t) £2(M(£) — 2N, (0))dt
Clearly
Moy (x) = m(x)
No(x) = n(x)
This implies that

My(x) = 1+ix3+3x2
° 20

5 2
No(x) = =1+ 2x +Ex3 +§x2

So,

1, (ie®
Myaa () = =57 f D tM(0) = 3N, (O)de
0 n=

Npor () = o j S (M, () — 20yt
0 n=

1

M;(x) = —%x3j t( My (t) — 3N, (t))dt
0

1

1 3 1 3 2 5 3 2 2
My(x) = —3x° | t(1+5t +3t)—3<—1+2t+§t +§t)dx
0

M;(x) = 0.34667x3
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Similarly
1 3 1
N, (x) = x3f (M, (t) — 2Ny (t)dt — Exz f t2(My(t) — 2N, (b))dt
0 0
N;(x) = x3 fl ((1 + ix3 + 3x2) -2 (—1 + 2x + Ex3 +zx2>)dt —Ex2 fl (t2(1 +ix3
! 0 20 2 5 27 ), 20
5 2
+3x2) —2(—-1+2x + §x3 + gxz)(t))dt
N;(x) = 0.6375x2% — 0.49583x3

And so, on

Hence M(x) = Yp—o M, (x) = My(x) + My (x) + My(x) + -

Will be M(x) ~ 1+ —x3 + 3x% + 0.34667x* and N(x) = Z_o No (%)

5 2
N(x) ~ -1+ 2x+ §x3 + gxz + 0.6375x2% — 0.49583x3

Which is reduced to
M(x) ~ 1+ 3x% + 0.39667x3
N(x) ~ =1+ 2x + 1.0375x2 + 2.0042x3
Modified Adomain Decomposition Method
From equation (iii), splitting m(x) into two parts i.e., mg(x) = 3x% + 1,m,(x) = %x:’;. Also,
splitting n(x) into two parts i.e., ng(x) = =14 2x + x3,ny(x) = %xz + %x3 and use recursive
relations to obtain

and,

{ My(x) =3x%+1
No(x) = x3 + 2x — 1.
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1 1 1
( M;(x) = %x3 — §x3 f t(My(t) — 3N,y (t))dt
0

3 2 1 3 1
N;(x) = §x3 + gxz —x3 f (My(t) — 2Ny (t))dt — Exz f t2(My(t) — 2Ny (t))dt
0 0

M;(x) = %xB‘ — %x3f0 t(Mo(t) — 3Ny (t))dt

1 1 1 1 1 3
=—x3—=x3 24 1) —3(t3+2t—1 =—x3—-= 3(_)=
20x 3x jo t((3t“+1) —3(t° + 2t — 1)dt 2Ox 3x 50 0

1 1
N, (x) = ;x3 + %xz —x3 f (Mo (t) — 2N, (2))dt — ;xz f t2(My(t) — 2N, (2))dt
0 0

3 2 1 3 1
= §x3 +§x2 —x3f (Bt2+1) =23+ 2t—1))dt— Exzf t2((3x%+ 1)
0 0

3 2 3 3 4
_ 3 _ 23,2 2_2.3_2 2fF)\_
2((t° + 2t — 1)dt X +5x 5X° T oX (15> 0.

M;(x) =0and N;(x) =0
Clearly

Mpi1(x) =0
Npy1(x) =0 forn=>1

Hence,
M(x) =3x2+1

Nx)=x3+2x—-1

Which is equivalent to the exact solution
Series Expansion Method

From equation (iii),
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1
( M(x) = 1+ix +3x%2 —=x f t(M(t) —3N(t))dt
3 0
1
t2(M(t) — 2N(t))dt

20

5 ! 3
N(x)=—-1+2x+=-x3+-x —x3f (M(t)—ZN(t))dt——xzf
2 5 0 2 0

Let M(x) = Yo anx™and N(x) = Yoo bp X

Equation (iii) can be written as

e 1

( z a, x" =1+ —x3+ 3x? ——x f t(z antn—3z nt™)dt
n=0 20 n=0 n=0
o 5 2

Z byx"=—-1+2x+=x3+=-x?—x f (Z ant”—ZZ b x)dt
n=0 2 5 0 n=0 n=0

3 1 0 0
——xzf t2 (Z ant”—Zz bnt”) dt
0 n=0 n=0

2

From
1 1 1 © ©
——x3f t(Z ant"—SZ bnt”)dt
3 0 n=0 n=0

a, x™ =14+ —x3+ 3x?

We have
1 0 o)
f (Z a, t"t1 — 32 b, t"“) dt
0 n=0 n=0

© 1
Tl_1 — 3 —_ =
znzoan +20x + 3x2 3%
a, b, )

1 o) o o
a,t"tt —3 E b t"*l)dtz E ( -
_fo (ano n n=o " neo\n+2 n+2

an bn )

zoo a x”=1+ix3+3x2—1x3—1x3z:oo (
n=o " 20 3 3 no\n+2 n+2

((az" +%) + <%+%>)

1
ap + a;x + a,x? + azx® + - —1+%x + 3x2 — 3%

a,=1,a,=0,a, =3

a,=0n=0

To get an approximate value for a3, we need to compute at least b, b4,

From
Page 103
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* n 53,2, 3 ' * n * n
z b, x =—1+2x+zx +§x —-X (Z apt —ZZ b,t )dt
n=0 0 n=0 n=0
1 oo [e9)
_E 2 2 n __ n
X t a,t 2 b, t"|dt
2 0 n=0 n=0
* n 5 3 2 2 3 ' * n * n
z b, x =—1+2x+zx +§x - X (Z a,t —22 b,t )dt
n=0 0 n=0 n=0
3 1 oo 1)
——xzf (Z a, t"t? _ZZ b, tn+2> dt
2 0 n=0 n=0

o 5 2 © g o b
R L
ano"x L RS Sy | peon + 1

3 (T
2 on+3 n+3

The above equation can be written as
bo + blx + b2x2 + b3x3 + b

5 2 aq bl
= — —x3 4 —x2 — 3 —_ e ) = —_
= 1+2x+2x +5x x((a0+2+ ) 2<b0+2+ ))

3 a a b b
It (0 Yo (0
zx((3+4+ ) 2<3+4+ ))

Comparing co efficient
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Similarly,

b; =~ 1.5

1 1(1) 3( 1+2)]
% %20 2 273

a; = 0.05

Hence, M(x) ~ 1 + 3x% + 0.05x3 and N(x) ~ —1 + 2x + 0.4x? + 1.5x3

3. Results

Table 3.1: Exact and Approximate Solution by ADM, MADM and SEM For Example 1with step

size 0.01

Exact

ADM

MADM

SEM

[EX-ADM|

|Ex-
MADM|

[EX-SEM|

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20

0.010100502
0.020404027
0.030913636
0.041632431
0.052563555
0.063710193
0.075075573
0.086662965
0.098475686
0.110517092
0.122790588
0.135299622
0.14804769
0.161038332
0.174275136
0.187761739
0.201501825
0.215499125
0.229757424
0.244280552

0.01020027
0.020803101
0.031811553
0.043228727
0.055057768
0.067301859

0.07996423
0.093048151
0.106556936
0.120493944
0.134862578
0.149666289
0.164908569
0.180592961
0.196723053

0.21330248
0.230334927
0.247824125
0.265773859
0.284187959

0.010100502
0.020404027
0.030913636
0.041632431
0.052563555
0.063710193
0.075075573
0.086662965
0.098475686
0.110517092
0.122790588
0.135299622
0.14804769
0.161038332
0.174275136
0.187761739
0.201501825
0.215499125
0.229757424
0.244280552

0.010050452
0.020203827
0.030463186
0.040831631
0.051312305
0.061908392
0.072623122
0.083459763
0.094421631
0.105512083
0.116734523
0.128092397
0.139589199
0.151228468
0.163013789
0.174948796
0.187037168
0.199282633
0.211688969
0.224260000

9.97685E-05
0.000399074
0.000897917
0.001596296
0.002494213
0.003591667
0.004888657
0.006385185
0.008081250
0.009976852
0.012071991
0.014366667
0.016860880
0.019554630
0.022447917
0.025540741
0.028833102
0.032325000
0.036016435
0.039907407

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

5.005E-05
0.0002002
0.00045045
0.0008008
0.00125125
0.0018018
0.002452451
0.003203202
0.004054054
0.005005008
0.006056065
0.007207225
0.008458491
0.009809864
0.011261347
0.012812944
0.014464657
0.016216492
0.018068455
0.020020552
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Figure 3.1. Exact and Approximate Solution by ADM, MADM and SEM For Example 1 with

Table 3.2. Root Mean Square Error for Example 1 with step size 0.01

Root Mean Square Error (RMSE)
ADM

0.018964759
MADM

0
SEM 0.00951404
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Figure 3.2. Absolute error by ADM, MADM and SEM For Example 1 with step
size 0.01
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Table 3.3: Exact and Approximate Solution by ADM, MADM and SEM For Example 1 with step

size 0.05
X Exact ADM MADM SEM |Ex-Adm| |[Ex-Madm|  |Ex-Sem|
0.05 0.052563555 0.05505777 0.052564 0.0513123 0.002494213 0.0000000 0.00125125
0.10 0.110517092 0.12049394 0.110517 0.1055121 0.009976852 0.0000000 0.00500501
0.15 0.174275136 0.19672305 0.174275 0.1630138 0.022447917 0.0000000 0.01126135
0.20  0.244280552 0.28418796 0.244281 0.22426  0.039907407 0.0000000 0.02002055
0.25 0.321006354 0.38336168 0.321006 0.289723 0.062355324 0.0000000 0.03128337
0.30 0.404957642 0.49474931 0.404958 0.3599063 0.089791667 0.0000000 0.04505139
0.35 0.496673642 0.61889008 0.496674 0.4353461 0.122216435 0.0000000 0.06132751
0.40 0.596729879 0.75635951 0.59673 0.5166133 0.159629630 0.0000000 0.08011655
0.45 0.705740483 0.90777173 0.70574 0.6043145 0.202031250 0.0000000 0.10142599
0.50 0.824360635 1.07378193 0.824361 0.6990938 0.249421296 0.0000000 0.12526689
0.55  0.95328916 1.25508893 0.953289 0.8016343 0.301799769 0.0000000 0.15165485
0.60 1.09327128 1.45243795 1.093271 0.91266  0.359166667 0.0000000 0.18061128
0.65 1.245101539 1.66662353 1.245102 1.0329368 0.421521991 0.0000000 0.2121647
0.70  1.409626895 1.89849264 1.409627 1.1632746 0.488865741 0.0000000 0.24635231
0.75 1587750012 2.14894793 1.58775 1.3045283 0.561197917 0.0000000 0.28322169
0.80 1.780432743 2.41895126 1.780433 1.457600 0.638518519 0.0000000 0.32283274
0.85 1.988699824 2.70952737 1.98870 1.623440 0.720827546 0.0000000 0.36525981
0.90 2.213642800 3.0217678 2.213643 1.8030488 0.808125000 0.0000000 0.41059405
0.95 2.456424176 3.35683506 2.456424 1.9974782 0.900410880 0.0000000 0.45894601
1.00 2.718281828 3.71596701 2.718282 2.2078333 0.997685185 0.0000000 0.5104485

Table 3.4. Root Mean Square Error for Example 1 with step size 0.05

Root Mean Square Error (RMSE)

ADM

MADM
SEM

0

0.47411898

0.240693898
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Figure 3.3: Exact and Approximate Solution by ADM, MADM and SEM For Example 1 with step
size 0.05
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Figure 3.4: Absolute error of ADM, MADM and SEM For Example 1 with step size 0.05
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Table 3.5: Exact and Approximate Solution by ADM, MADM and SEM for Example 2(M(x))
with step size 0.01

Ex-

X Exact ADM MADM SEM [A\dml |[Ex-Mad| |Ex-Sem|
0.00 1.0000 1.00000000 1.0000 1.00000000 0.00000 0.000000 0.000000
0.01 1.0003 1.0003004 1.0003 1.00030005 3.97E-07 0.000000 5E-08
0.02 1.0012 1.00120317 1.0012 1.00120040 3.17E-06 0.000000 4E-07
0.03 1.0027 1.00271071 1.0027 1.00270135 1.07E-05 0.000000 1.35E-06
0.04 1.0048 1.00482539 1.0048 1.00480320 2.54E-05 0.000000 3.2E-06
0.05 1.0075 1.00754958 1.0075 1.00750625 4.96E-05 0.000000 6.25E-06
0.06 1.0108 1.01088568 1.0108 1.01081080 8.57E-05 0.000000 1.08E-05
0.07 1.0147 1.01483606 1.0147 1.01471715 0.000136 0.000000 1.715E-05
0.08 1.0192 1.0194031 1.0192 1.01922560 0.000203 0.000000 2.56E-05
0.09 1.0243 1.02458917 1.0243 1.02433645 0.000289 0.000000 3.645E-05
0.10 1.0300 1.03039667 1.0300 1.03005000 0.000397 0.000000 5E-05
0.11 1.0363 1.03682797 1.0363 1.03636655 0.000528 0.000000 6.655E-05
0.12 1.0432 1.04388545 1.0432 1.04328640 0.000685 0.000000 8.64E-05
0.13 1.0507 1.05157148 1.0507 1.05080985 0.000871 0.000000 0.0001099
0.14 1.0588 1.05988846 1.0588 1.05893720 0.001088 0.000000 0.0001372
0.15 1.0675 1.06883876 1.0675 1.06766875 0.001339 0.000000 0.0001688
0.16 1.0768 1.07842476 1.0768 1.07700480 0.001625 0.000000 0.0002048
0.17 1.0867 1.08864884 1.0867 1.08694565 0.001949 0.000000 0.0002457
0.18 1.0972 1.09951338 1.0972 1.09749160 0.002313 0.000000 0.0002916
0.19 1.1083 1.11102076 1.1083 1.10864295 0.002721 0.000000 0.0003430
0.20 1.1200 1.12317336 1.1200 1.12040000 0.003173 0.000000 0.0004000
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Figure 3.5: Exact and Approximate Solution by ADM, MADM And SEM for Example 2, M(x)
with step size 0.01.
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Figure 3.6: Absolute error by ADM, MADM And SEM for Example 2, M(X)

with step size 0.01.

Table 3.6. Root Mean Square Error for Example 2 M(x) with step size 0.01

Root Mean Square Error (RMSE)

ADM

MADM
SEM

0.001274

0
0.000161
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Table 3.7: Exact and Approximate Solution by ADM, MADM and SEM for Example 2(M(x)) with
step size 0.05

Ex-
X Exact ADM MADM SEM |[Ex-Adm| |Ex-Mad| éeml
0.00 1.0000 1.000000 1.0000 1.000000 0.000000 0.0000 0.000000
0.05 1.0075 1.007550 1.0075 1.007506 4.96E-05 0.0000 6.25E-06
0.10 1.0300 1.030397 1.0300 1.030050 0.000397 0.0000 5E-05
0.15 1.0675 1.068839 1.0675 1.067669 0.001339 0.0000 0.000169
0.20 1.1200 1.123173 1.1200 1.120400 0.003173 0.0000 0.000400
0.25 1.1875 1.193698 1.1875 1.188281 0.006198 0.0000 0.000781
0.30 1.2700 1.280710 1.2700 1.271350 0.01071 0.0000 0.001350
0.35 1.3675 1.384507 1.3675 1.369644 0.017007 0.0000 0.002144
0.40 1.4800 1.505387 1.4800 1.483200 0.025387 0.0000 0.003200
0.45 1.6075 1.643647 1.6075 1.612056 0.036147 0.0000 0.004556
050 1.7500 1.799584 1.7500 1.756250 0.049584 0.0000 0.006250
0.55 1.9075 1.973496 1.9075 1.915819 0.065996 0.0000 0.008319
0.60 2.0800 2.165681 2.0800 2.090800 0.085681 0.0000 0.010800
0.65 2.2675 2.376435 2.2675 2.281231 0.108935 0.0000 0.013731
0.70 24700 2.606058 2.4700 2.487150 0.136058 0.0000 0.017150
0.75 2.6875 2.854845 2.6875 2.708594 0.167345 0.0000 0.021094
0.8 29200 3.123095 2.9200 2.945600 0.203095 0.0000 0.025600
0.85 3.1675 3.411105 3.1675 3.198206 0.243605 0.0000 0.030706
0.90 3.4300 3.719172 3.4300 3.466450 0.289172 0.0000 0.036450
0.95 3.7075 4.047595 3.7075 3.750369 0.340095 0.0000 0.042869
1.00 4.0000 4.396670 4.0000 4.050000 0.396670 0.0000 0.050000
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Figure 3.7: Exact and Approximate Solution by ADM, MADM and SEM for Example 2(M(x))
with step size 0.05
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Figure 3.8: Absolute error of ADM, MADM and SEM for Example 2(M(x)) with step size 0.05

Table 3.8. Root Mean Square Error Between the Exact and Approximate Solution by ADM,
MADM and SEM for Example 2 M(x) with step size 0.05

Root Mean Square Error (RMSE)
ADM 0.159189
MADM 0
SEM 0.020066

Table 3.9: Exact and Approximate Solution by ADM, MADM and SEM for example 2(N(X)) with
step size 0.01
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X Exact ADM MADM SEM |[Ex-Adm| Ex-Mad|| | Ex-Sem|
1.00000 - 1.000000 0.0000000 0.000000  0.000000
0.00 0 1.000000 -1.000000 0 0 0 0
0.97999 - 0.979958 0.0001047 0.000000
0.01 9 0.979894 -0.979999 5 50 4.05E-05
0.95999 - 0.959828 0.0004230 0.000000 0.000164
0.02 2 0.959569 -0.959992 0 3 0 0
0.93997 - 0.939599 0.0009608 0.000000  0.000373
0.03 3 0.939012 -0.939973 5 6 0 5
0.91993 - 0.919264 0.0017242 0.000000  0.000672
0.04 6 0.918212 -0.919936 0 7 0 0
0.89987 - 0.898812 0.0027192 0.000000  0.001062
0.05 5 0.897156 -0.899875 5 7 0 5
0.87978 - 0.878236 0.0039519 0.000000  0.001548
0.06 4 0.875832 -0.879784 0 10 0
0.85965 - 0.857525 0.0054281 0.000000 0.002131
0.07 7 0.854229 -0.859657 5 9 0 5
0.83948 - 0.0071541 0.000000  0.002816
0.08 8 0.832334 -0.839488 -0.836672 50 0
0.81927 - 0.815666 0.0091358 0.000000 0.003604
0.09 1 0.810135 -0.819271 5 10 5
0.79900 - 0.794500 0.0113792 0.000000  0.004500
0.10 0 0.787621 -0.799000 0 0 0 0
0.77866 - 0.773163 0.0138903 0.000000  0.005505
0.11 9 0.764779 -0.778669 5 4 0 5
0.75827 - 0.751648 0.0166752 0.000000 0.006624
0.12 2 0.741597 -0.758272 0 6 0 0
0.73780 - 0.729944 0.0197399 0.000000  0.007858
0.13 3 0.718063 -0.737803 5 8 0 5

IIARD — International Institute of Academic Research and Development

Page 117



about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 10 No. 4 2024 www.iiardjournals.org Online Version

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.71725
6

0.69662
5

0.67590
4

0.65508
y

0.63416
8

0.61314
1

0.59200
0

0.694165-
0.669892-
0.645232[
0.62017(;
0.594697-
0.568799-

0.542466

-0.717256

-0.696625

-0.675904

-0.655087

-0.634168

-0.613141

-0.592000

0.708044
0

0.685937
5

0.663616
0

0.641070
5

0.618292
0

0.595271
5

0.572000
0

0.0230905
2

0.0267329

3

0.0306732

0.0349173
8

0.0394714
9

0.0443415
6

0.0495336

0.000000
0

0.000000
0

0.000000
0

0.000000
0

0.000000
0

0.000000
0

0.000000
0

0.009212
0

0.010687
5

0.012288
0

0.014016
5

0.015876
0

0.017869
5

0.020000
0

IIARD — International Institute of Academic Research and Development

Page 118



about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X
P-ISSN 2695-1908, Vol. 10 No. 4 2024 www.iiardjournals.org Online Version

0
0 0.010.020.030.040.050.060.070.080.09 0.1 0.110.120.130.140.150.160.17 0.180.19 0.2
-0.2
-0.4
.o eedll-- Exaact
2 06 | el o.'...i ------
= 06 e ADM
cetloet MADM
'..'.'.;0'.“
Lesset®®T T [ seesen SEM
. -'.c‘
“g%'u
0.8 -u‘"“
.l".‘
...I"
ot
Lo’
'.n.

1| et

-1.2

X
Figure 3.9: Exact and Approximate Solution by ADM, MADM And SEM For Example 2 N(X)
with step size 0.01

Table 3.10. Root Mean Square Error Between the Exact and Approximate Solution by ADM,
MADM and SEM for Example 2 N(x) with step size 0.01

Root Mean Square Error (RMSE)
ADM 0.022432
MADM 0
SEM 0.009007
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Figure 3.10. Absolute Difference Between the Exact and Approximate Solution by ADM, MADM
and SEM for Example 2 N(x) with step size 0.01
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Table 3.11: Exact and Approximate Solution by ADM, MADM And SEM For Example 2 N(X)
with step size 0.05

X
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Figure 3.11: Exact and Approximate Solution by ADM, MADM And SEM For Example 2 N(X)
with step size 0.05
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Figure 3.12: Absolute error ADM, MADM And SEM For Example 2 N(X) with step size 0.05

Table 3.12. Root Mean Square Error Between the Exact and Approximate Solution by ADM,
MADM and SEM for Example 2 N(x) with step size 0.05

Root Mean Square Error (RMSE)
ADM 0.881106
MADM 0
SEM 0.384823
4. Discussion
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In this comparative analysis, we evaluated the solutions to Fredholm linear integro-difterential
equations using three different methods: The Adomian Decomposition Method (ADM), the
Modified Adomian Decomposition Method (MADM), and the Series Expansion Method (SEM).
The effectiveness of each method was assessed based on numerical accuracy, convergence rate,
computational efficiency, and ease of implementation.

The ADM is a powerful tool for solving linear integro-differential equations, providing solutions
in the form of a rapidly convergent series. This method decomposes the original problem into a
series of simpler sub-problems, which are easier to solve. It ADM provides highly accurate
solutions for Fredholm integro-differential equations, especially for problems with smooth and
well-behaved kernels. The series solution obtained by ADM converges rapidly, reducing
computational overhead. The implementation of ADM is straightforward, involving recursive
computation of Adomian polynomials, which simplifies the process.

The MADM typically yields more accurate results compared to ADM. The convergence rate of
MADM is generally faster than that of ADM, leading to more efficient computations. While
slightly more complex than ADM, MADM remains relatively easy to implement and offers
significant improvements in terms of precision and efficiency.

The Series Expansion Method involves expressing the solution as a series and determining the
coefficients through various techniques, such as power series or Fourier series. The convergence
is slower compared to ADM and MADM. SEM is more challenging to implement, requiring
careful consideration of the series type and the computation of coefficients.

Comparing the methods used, it's evident from the results in the examples provided. The
techniques exhibit strength, effectiveness, and offer more precise approximations, often yielding
closed-form solutions where possible. When the methods were applied to linear Fredholm integro-
differential equations with separable kernels, the outcomes from different approaches tend to be
quite similar. In comparison to SEM, both MADM and ADM are notably simpler particularly, the
MADM solution stands out for its superior precision and reduced computational requirements
compared to ADM and SEM. Moreover, MADM shows quicker convergence than ADM and SEM,
requiring fewer computations.

Tables 3.1- 3.12 illustrate the comparison of result, absolute error and root mean square(RMSE)
among ADM, MADM, and SEM concerning exact solutions. The error analyses depicted in these
tables confirm that MADM consistently outperforms ADM and SEM. Additionally, statistical
assessments underscore that MADM achieves higher precision more rapidly than ADM and SEM.
Furthermore, when the step size was increased from 0.01 to 0.05, ADM deviated more from the
Exact solution while SEM tends more to the Exact solution. The comparison of results, absolute
errors and RMSE indicates SEM's superiority over ADM.

The visual representations in Figures 3.1 to 3.12 complement these findings, offering a graphical
overview of the analysis.
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5. Conclusion

The Modified Adomian Decomposition Method stands out as the most effective approach for
solving Fredholm linear integro-differential equations, offering superior accuracy, convergence,
and computational efficiency. The Adomian Decomposition Method also performs well, providing
a balance of accuracy and ease of implementation. The Series Expansion Method, while powerful,
is best suited for problems where the series convergence is well-understood and can be effectively
managed.
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